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Abstract. A new model of evolution is presented for finite size systems. Conditions under which a minority
species can emerge, spread and stabilize to a macroscopic size are studied. It is found that space organization
is instrumental in addition to a qualitative advantage. Some peculiar topologies ensure the overcome of the
initial majority species. However the probability of such local clusters is very small and depend strongly on
the system size. A probabilistic phase diagram is obtained for small sizes. It reduces to a trivial situation
in the thermodynamic limit, thus indicating the importance of dealing with finite systems in evolution
problems. Results are discussed with respect to both Darwin and punctuated equilibria theories.

PACS. 87.23.Kg Dynamics of evolution – 05.50.+q Lattice theory and statistics – 64.60.-i General studies
of phase transitions

This paper provides a simple model to describe competi-
tion between two species over a territory and demonstrates
the essential role played by finite size systems. First, we
show that our model can be described in terms of a proba-
bilistic phase diagram which reduces to a trivial situation
when the system size goes to infinity. Second, our model
yields a new interpretation of the phenomena of punctu-
ated equilibria in the framework of species evolution.

A possible conclusion is that some socio-economical
systems may be characterized by a strong sensitivity to
system size. For instance, the macroscopic behavior may
change dramatically whether the system is just large or if
it is really huge.

The reason of this peculiar property is the existence,
in such systems, of statistically very rare configurations
which drive the evolution in a new and atypical way.
The observation that rare events can develop and reach
a macroscopic size has already been noticed in other con-
texts. Examples are given by the generalized prisoner
dilemma problems [1–3] or the recent work by Solomon [4].
Percolation problems give another example where a qual-
itative change of behavior is observed in the limit of an
infinite system [5].

We propose to consider the effect of the system size in
the model of competing standards or opinion forming in-
troduced in [6]. There, we have analyzed several properties
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b Laboratoire associé au CNRS (UMR n◦ 800) et à
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of the model for large 2d systems but without paying at-
tention to the effects that will take place if the system be-
come really huge. Of course, in 2d, the system sizes that
are necessary to exhibit these effects are numerically out
of reach. Thus, here, we restrict our study to the 1d case
which is much more tractable while still having the same
generic features as the 2d system.

We start from two populations A and B which are
influencing each other or competing for some unique re-
sources. The individuals move in space according to a cel-
lular automata dynamics, similar to the reaction-diffusion
model proposed by Chopard and Droz [7]. However, here,
we consider only one type of particle with two possible
internal states (±1), coding for the A or B species, re-
spectively.

The model is as follows. Individuals move on a regular,
1d lattice. At each site, there are always four individu-
als (any combination of A’s and B’s is possible). Initially,
populations A and B are randomly distributed (indepen-
dently, identically distributed) over the lattice sites, with
respective concentrations a0 and b0 = 1− a0.

The evolution time is discretized. At each time step
and at each site, two particles randomly chosen among the
four travel to the left while the two others travel to the
right. Thus, at each time step, the individuals alway move
and there are alway four individuals at each lattice site.

After the motion phase, the individuals interact locally
with probability k. The interaction takes place in the form
of “fights” between the four individuals meeting on the
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Fig. 1. Probabilistic stationary state phase diagram for sys-
tems of size L = 256 and L = 1024. Contour lines for pB = 0.5
and/or 0.9 are shown. The region marked B indicates that pB
is large whereas it is small in region A.

same site. At each fight, the group nature (A or B) is
updated according the following biased majority rule:

nA+mB →
{

(n+m)A if n > m

(n+m)B if n ≤ m

where n+m = 4. This bias accounts for some advantage
(or extra fitness) of species B over A.

The above rule is applied with probability k. Thus,
with probability 1 − k the group composition does not
change since no fight occurs. In between fights both pop-
ulation agents perform a random walk on the lattice, as
explained above.

It is clear that the model richness comes from the even
confrontations. If only odd fights would happen, the initial
majority population would always win within short time
intervals.

The key parameters are (i) k, the aggressiveness (prob-
ability of confrontation), and (ii) b0, the initial density
of B. The strategy according to which a small minority
of B’s (with yet a technical, genetic, persuasive advan-
tage) could win against a large population of A’s is not
obvious. Should they fight very often, try to spread or
accept a peace agreement?

In the limit of low aggressiveness (k → 0), the particles
move a long time before fighting. Due to the diffusive mo-
tion, correlations between successive fights are destroyed.
This is the mean-field level of this dynamical model which
corresponds to the theoretical calculations made by Galam
in his election model [8]. It was shown that B always wins
provided that b0 > 0.23. This limit is visible in Figure 1,
for the curve shown with empty circles, for which we have
studied numerically the case k → 0.

As soon as k is not too small local correlations become
non negligible and our cellular automata model account
for their effects.

Here we study systems of linear size L with periodic
boundary conditions. For given values of b0 and k the dy-
namics is iterated until a stationary state (either all A or
allB) is reached. The interesting point is that the outcome
of this experiment is found to be probabilistic: the final
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Fig. 2. Critical size r of a single B cluster that invades the
system with probability 0.9, as a function of the aggressiveness
k. Dots are the results of the CA model and the solid line is
an empirical fit: k = 1/(r1.8).

state is all B with probability pB and all A with proba-
bility 1 − pB. Also, the value of pB depends crucially on
the system size L. As we shall see, when L → ∞, pB is
one for the all (b0, k) plane.

For this reason, a standard phase diagram cannot de-
scribe the situation properly. Thus, we propose a descrip-
tion in terms of what we call a probabilistic phase diagram:
each point of the (b0, k) plane is assigned a probability pB
that the final state is entirely B. Ideally, this diagram
should be represented as a 3D plot. Instead, in Figure 1,
we show contour lines corresponding to given probabili-
ties pB. Note that for the same value of pB, the isoline is
shifted to the left as the system size increases.

These data show that if the aggressiveness k is large
enough, initial configurations with a quite low density of
B’s are able to overcome the large initial majority of the
A species. The reason being the presence of B actors
which are organized in small clusters such that the dif-
fusion is not effective enough to destroy them. They ex-
pand at a rate which makes them win systematically in
the fights against A actors. Figure 2 is obtained by con-
sidering an initial B cluster of size r in a sea of A’s. The
plot shows, for each value of k the critical value of r which
ensures that the B cluster will invade all the system with
probability 0.9.

The result of Figure 2 is independent of the system
size L and the question is then how often such clusters
appear by chance. In a finite size system, with a given
random concentration b0 of B actors, there is always a
finite probability for such small clusters to exist in the
initial configuration. When this is the case the system will
reach a pure B stationary state. The larger the L the more
likely it is to observe such a devastating cluster.

The way the separation line in Figure 1 depends on
L has been investigated in Figure 3. The plot shows the
location of the transition line as a function of L for a fixed
probability pB = 1/2 and different values of k.

One sees that when L increases, the probabilistic line
corresponding to a given probability pB moves to the
left and an extrapolation to an infinite size system leads
to a collapse of the transition line with the vertical axis
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Fig. 3. Dependence of the critical density b0 of B particle as a
function of the system size L, for a wining probability pB = 0.5
and two values of k. We see that the A − B separation line
moves as 1/(L0.54).
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Fig. 4. Critical initial density b0 as a function of B’s proba-
bility to win, pB, for two values of k and L = 256. From the
assumption of a linear dependence, the value of b0 for pB = 1
can be interpolated.

for all values k 6= 0. For k = 0, one recovers the mean-field
transition point b0c = 0.23, for all values of pB > 0. This
is shown in Figure 1 for the case L = 256, pB = 1/2, and
can be confirmed by direct numerical simulations at k = 0
(complete mixing of the individual at each time step).

These results show that the respective behaviors of
finite size and infinite size systems are qualitatively
different.

Figure 4 shows, for a fixed system size L = 256, how
the critical density b0 varies with pB. For two values of k,
the plot suggests an almost linear dependence.

We now discuss in more detail the question of the ap-
pearance of the devastating B clusters. More precisely, we
would like to know what is the probability P

(r)
L to find

at least one cluster formed of r consecutive B particles in
a system of size L providing that the sites are randomly
filled respectively with B particles with probability b0 and
with A particles with probability a0 = 1− b0.

This is a difficult problem for arbitrary values of b0.
However, the case b0 = 1/2 is simpler, and a careful
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Fig. 5. Probability P
(r)
L of finding at least one cluster formed

of r consecutive B particles in a system of size L, for r = 2 and
r = 3. The B’s are uniformly distributed, with probability 1/2.

bookkeeping, leads to the following recursion relation:

P
(r)
L = P

(r)
(L−1) + a

(r)
L

(
1
2

)L
(1)

where the arL are generalized Fibonacci numbers defined
by the following recursion relation:

a
(r)
1 = a

(r)
2 = ... = a

(r)
r−1 = 1,

a(r)
n = a

(r)
n−1 + a

(r)
n−2 + ...+ a

(r)
n−r, n ≤ r + 1 (2)

the particular case r = 2 corresponds to the usual
Fibonacci numbers. The behavior of P (r)

L is shown in
Figure 5 for several values of r.

One sees that for a fixed value of r and as L gets large,
P

(r)
L → 1.

Another interesting problem, related to mutation dy-
namics, can be investigated within this very simple model.
Let us consider a system of size L in a pure A state. Then,
due to some mutation mechanism, at each iteration time,
beside the former rule, a small randomly chosen fraction
pm of the A population turns to B. As a result of this
new dynamics, the A population can be extinct after some
time Tdeath. This is due again to the random appearance
of small B clusters which are spatially organized in a pe-
culiar topology which eventually overcomes the whole A
population.

For a fixed value of pm this extinction time varies a lot
from sample to sample. One can then study the frequency
of a given extinction time by performing a large number
of different simulations for a given choice of k, L and pm.
Typical results are given in Figure 6.

According to our model, the probability that A sur-
vives during T units of time is P (Tdeath = T ) ≤ p(1 −
p)T−1, where p is the probability that a devastating B
cluster appears due to a mutation. Such a fit is shown in
Figure 6 as a dashed line. Note that, for large T , a power
law fit is also possible, as shown by the straight solid line:
P (Tdeath) ∼ T−2.03

death . However, the first fit is clearly more
convincing and may thus provide a new interpretation of
the phenomena of punctuated equilibria.
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Fig. 6. Frequency distribution of the extinction times for a
system of size L = 256, for k = 0.5 and pm = 0.0004. The
distribution is built by organizing the extinction times in 40
bins of size 500. The straight line is a fit of the data shown as
black dots and indicates a power law behavior with exponent
−2.03. The dashed line is a fit γ(1− p)Tdeath , with γ = 70 and
p = 0.00022.

In this paper, we have shown how local topology could
turn instrumental to the growth of a new species B at the
expense of a former one A. The accidental occurrence of
these small clusters act as nucleus from which the B’s can
develop. However, when k is too small, diffusion always
destroys such a local organization. Moreover, the larger

the system is, the more likely is the occurrence of such
rare clusters stressing the qualitative difference between
finite and infinite systems when describing evolution. A
new interpretation of punctuated equilibrium can then be
obtained.

In conclusion, our model embodies some basic features
of species dynamics. Its generality makes it applicable to a
large range of systems in various different fields like, group
opinion forming, economic standard formation, emergence
of innovation, and evolution theory.
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